For Further Reading, |
EE2202 ELECTROMAGNETIC THEORY L T P C
3 1 0 4
AIM
This subject aims to provide the student an understanding of the fundamentals of electromagnetic
fields and their applications in Electrical Engineering.
OBJECTIVES
To impart knowledge on
i. Concepts of electrostatics, electrical potential, energy density and their applications.
ii. Concepts of magnetostatics, magnetic flux density, scalar and vector potential and its
applications.
iii. Faraday’s laws, induced emf and their applications.
iv. Concepts of electromagnetic waves and Pointing vector.
UNIT I INTRODUCTION
Sources and effects of electromagnetic fields – Vector fields – Different co-ordinate systems- vector
calculus – Gradient, Divergence and Curl - Divergence theorem – Stoke’s theorem.
UNIT II ELECTROSTATICS
Coulomb’s Law – Electric field intensity – Field due to point and continuous charges – Gauss’s law
and application – Electric potential – Electric field and equipotential plots – Electric field in free
space, conductors, dielectric -Dielectric polarization - Dielectric strength - Electric field in multiple
dielectrics – Boundary conditions, Poisson’s and Laplace’s equations – Capacitance- Energy
density.
UNIT III MAGNETOSTATICS
Lorentz Law of force, magnetic field intensity – Biot–savart Law - Ampere’s Law – Magnetic field due
to straight conductors, circular loop, infinite sheet of current – Magnetic flux density (B) – B in free
space, conductor, magnetic materials – Magnetization – Magnetic field in multiple media – Boundary
conditions – Scalar and vector potential – Magnetic force – Torque – Inductance – Energy density –
Magnetic circuits.
UNIT IV ELECTRODYNAMIC FIELDS
Faraday’s laws, induced emf – Transformer and motional EMF – Forces and Energy in quasistationary
Electromagnetic Fields - Maxwell’s equations (differential and integral forms) –
Displacement current – Relation between field theory and circuit theory.
UNIT V ELECTROMAGNETIC WAVES
Generation – Electro Magnetic Wave equations – Wave parameters; velocity, intrinsic impedance,
propagation constant – Waves in free space, lossy and lossless dielectrics, conductors-skin depth,
Poynting vector – Plane wave reflection and refraction – Transmission lines – Line equations – Input
impedances – Standing wave ratio and power.
TEXT BOOKS:
1. Mathew N. O. SADIKU, ‘Elements of Electromagnetics’, Oxford University press Inc. First India
edition, 2007.
2. Ashutosh Pramanik, ‘Electromagnetism – Theory and Applications’, Prentice-Hall of India Private
Limited, New Delhi, 2006.
REFERENCES
1. Joseph. A.Edminister, ‘Theory and Problems of Electromagnetics’, Second edition, Schaum
Series, Tata McGraw Hill, 1993.
2. William .H.Hayt, ‘Engineering Electromagnetics’, Tata McGraw Hill edition, 2001.
3. Kraus and Fleish, ‘Electromagnetics with Applications’, McGraw Hill International Editions, Fifth
Edition, 199
For Further Reading,
1 comments:
There is a proper deaiteld informasion given above about Electromagnetic Theory Syllabus(EMT), Now Learn Electromagnetic Engineering with Adaptable Online Videos Course Materials Video Lectures on Electromagnetic Engineering from Superior Faculty.
Post a Comment